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Abstract 
This paper explores and introduces the idea of a Cognitive State Machine (CSM) -- a 
working hypothesis that asks whether machine reasoning can be described as a 
structured, verifiable process. By now it has become clear that the limits of today’s 
generative systems are not computational -- they are structural. 
 
Over the past three years, that realization has matured from an operational insight into a 
guiding architectural principle. 
 
What began as an observation in practice has since become a question of architecture. 
The attempt to engineer reliable reasoning systems forced us into seeking formalization. 
In that sense, theoretical reflection became unavoidable, not intentional. 
 
The Cognitive State Machine (CSM) therefore represents a hypothesis discovered 
through engineering -- not engineering derived from theory. In walking this path, we 
found ourselves building not only software, but a theoretical model. What began as an 
engineering eNort became the search for a formal framework of Machine Reasoning. 
 
The paper presents initial thoughts on conceptual CSM foundations, the connect to its 
architectural instantiation through the Leibniz–von Neumann Architecture (LVNA), and 
empirical results from early-stage production systems (e1, e2) operating under 
regulatory conditions. We treat CSM as an engineering hypothesis, subject to 
formalization and falsification. 
 
What began as engineering has become theory, and what now follows is the 
convergence of both: building systems to formalize what theory reveals, and theorizing 
what construction makes visible. Our objective is not to redefine intelligence, but to test 
how far reasoning can be expressed as a verifiable computational structure. 
 
In retrospect, the field’s fascination with scale now appears as a transitional phase -- 
necessary to expose the deeper need for structure. If our hypothesis substantiates, it 
could form the basis for a new architectural layer of Machine Reasoning -- one defined 
not by scale, but by structure. It took many quarters of building before this distinction 
became visible – and now that we see it, our future direction becomes even more 
obvious. 
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1. INTRODUCTION: THE AI ADOPTION GAP 
In 2022, we began building AI for deployment in regulated industries -- energy, finance, 
the public sector. These contexts share a non-negotiable requirement: every decision 
must be auditable, every line of reasoning reproducible, every failure observable. 
 
Especially in Europe, these requirements are non-negotiable necessities. Building 
intelligent systems within such constraints was never a luxury project, but a response to 
real regulatory and societal expectations. Over time, we learned that these constraints 
were not obstacles to innovation -- they were the conditions that shaped it. In other 
words: what might appear ambitious from afar simply emerged from the environment we 
work in. 
 
Meeting those standards forced us deeper than expected. The limitation was not 
intelligence per se -- it was the absence of structure and system architecture. 
 
At first, we considered this a purely architectural gap. But as we tried to fix it, the gap 
turned into a conceptual one. The architecture forced us to make explicit what had so 
far remained implicit -- the structure of reasoning itself. At that point, we did not imagine 
we were formulating a new theoretical path -- we were simply trying to make our 
systems work. It was not a move from engineering to theory, but the realization that 
engineering had already become theory in disguise. 
 
We realized: Large language models can predict, generalize, improvise -- but they 
cannot prove what they know. Token prediction is a continuous statistical process: it has 
no concepts or structural elements for discrete states, no explicit transitions, no 
structural validation. 
 
And that means something simple but profound: You cannot trace a probability 
distribution. You cannot certify an approximation. You cannot bound the risk of an 
opaque process. This was the starting point of what we now call cognitive control -- the 
ability of a system to reason within constraints that are themselves formally defined. 
 
Instead of accepting that gap, we started building — not another model, but the missing 
architecture. Long before the term entered the discourse, we were already building 
systems that embodied it. Step by step, a new foundation emerged: 

• The Cognitive State Machine, a formal model of structured reasoning built on 
discrete states, operator-mediated transitions, and formal control; 

• The Leibniz-von-Neumann Architecture, which translates those principles into 
a practical system design; 

• And our production systems, e1 and e2, which prove the model under real-world 
conditions -- at scale, in regulation-bound industries. 

 
Together, they form what we call a Cognitive Architecture -- an integrated framework for 
systems that can reason in verifiable ways. Not bigger models. Not better prompts. A 
diNerent class of system. 
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To our knowledge, no other framework combines theory, architecture, and production at 
this level of integration. Europe’s constraints forced us to go deeper -- and by doing so, 
they may have opened a path others not yet had to explore. 
 
The following pages summarize what we’ve learned so far, where the work stands today, 
and why we believe this marks the beginning of a new architectural era for AI. 
 
Whether this becomes a standard or remains a singular path is not for us to decide – as 
of today, we can only share our learnings and early practical and theoretical evidence 
from being three years into that space. 
 
 

2. WHAT LARGE-SCALE AI ADOPTION ACTUALLY REQUIRES 
Before describing our approach, we must be precise about what high-stakes 
deployment actually demands. These requirements emerge from three years of working 
with enterprises in regulated industries, from regulatory frameworks in energy, finance, 
and healthcare, and from production experience where failures have real 
consequences. 
 
These questions reflect four fundamental requirements that current AI approaches 
cannot provide, structurally. 
 
Traceability means that every reasoning step must be reconstructible. Not 
approximately, not statistically, but exactly. If a system recommends a specific action, 
an auditor must be able to trace backward through the complete chain of reasoning that 
led to that recommendation. This is not about explainability in the sense of post-hoc 
rationalization. It is about intrinsic structure that preserves the path from input to 
output. 
 
Validation means that every transformation in the reasoning process must be verified 
against explicit rules or constraints. When a system moves from one reasoning state to 
another, that transition must be checked. This verification must happen during the 
reasoning process, not after. A system cannot be validated by examining only its 
outputs. It must be validated by examining its structure. 
 
Reproducibility means that the same input must produce the same reasoning 
structure. Not necessarily the same final answer, but the same path through the 
reasoning space. This enables testing, certification, and insurance. A system whose 
behavior is fundamentally non-deterministic cannot be certified for high-stakes use, 
because certification applies to specific behaviors, not to probability distributions over 
behaviors. 
 
Observable failures mean that when a system encounters a situation it cannot handle, 
it must recognize this and escalate rather than proceed. Current AI systems have no 
reliable mechanism for distinguishing between situations they can handle and 
situations they cannot. They produce output with equal confidence regardless of 
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whether they are operating within their competence boundary or far outside it. For 
deployment in contexts where errors have serious consequences, this is unacceptable. 
 
These four properties are not independent. They form a coherent structural requirement. 
Traceability requires discrete states. Validation requires explicit transitions. 
Reproducibility requires deterministic structure. Observable failures require 
introspective control that operates on explicit state. 
 
Token prediction, in its current architectural form, cannot provide these properties. This 
is not a criticism of large language models per se. It is a statement about the 
architectural structure of the approach. A system that generates output by predicting 
the next most likely token, repeatedly, has no discrete states to trace, no explicit 
transitions to validate, no deterministic structure to reproduce, and no introspective 
awareness of its competence boundaries. 
 
We encountered this gap not as a theoretical problem but as a practical barrier. Every 
client conversation ended the same way. Impressive demonstrations, followed by 
questions about auditability and reproducibility, followed by silence. The gap between 
capability and deployment is not closing through better prompts or larger models. It is 
structural. 
 
The question became: what kind of system architecture can provide these properties 
while still leveraging the remarkable capabilities of large language models? The answer 
required going deeper than we initially expected. 
 
 

3. COGNITIVE STATE MACHINES: THEORETICAL FOUNDATIONS 
When we started, we initially did not set out to develop a new theoretical model. We 
simply set out to build systems that could be deployed in regulated industries. But the 
domain forced us deeper. To provide traceability, validation, reproducibility, and 
observable failures, we needed discrete states, explicit transitions, and formal control. 
As we built systems with these properties, we realized we were implementing something 
that had no formal definition. 
 
Cognitive State Machines emerged from this work. CSM is our approach to formalize 
our discovery: a computational model for structured reasoning that could become as 
fundamental to cognitive systems as Turing Machines are to computing systems. 
 
A Cognitive State Machine operates on three core primitives: 

- Cognitive Artefacts, 
- Cognitive Operators, and 
- Cognitive Control. 

 
Formally, a Cognitive State Machine can be defined as 
 

𝐶𝑆𝑀 = (𝐴, 𝑂, 𝐶, 𝑆) 
 



Toward Cognitive State Machines, Page 5 

where 
𝐴 denotes the set of artefacts, 
𝑂	the set of cognitive operators, 
𝐶 the control function, and 
𝑆! ⊆ 𝐴 the cognitive state of the system at time 𝑡. 
 
Cognitive Artefacts are discrete, versioned units of thoughts (represented through a 
sequence of tokens). However, they are treated as discrete objects with explicit 
structure. Each artefact has content, provenance, status, and timestamp. An artefact 
might represent a claim, a piece of evidence, an inference, a constraint, or a decision. 
The critical property is discreteness. The artefact is a first-class computational entity 
with defined boundaries. 
 
This discreteness is fundamental. In token prediction systems, there are no structural 
boundaries. The system generates a continuous stream of tokens, and any 
segmentation into reasoning units is imposed through interpretation after the fact. In 
CSM, boundaries, state and transitions are part of the formal structure. 
 
Cognitive Operators are functions that transform artefacts. An operator takes one or 
more artefacts as input and produces one or more artefacts as output. Each operator 
𝑂"defines a transformation 
 

𝑂": 𝐴# → 𝐴$  
 
or, for composite reasoning steps, 
 

𝑂": 𝐴# × 𝐴% → 𝐴$  
 
The operator’s execution yields a validation signature 
 

𝜎" = 𝑓(𝑂" , 𝐴# , 𝐴$ , 𝑡) 
 
capturing provenance and timestamp for traceability. Critically, this transformation is 
not arbitrary. Each operator has a defined type and produces a validation signature. 
 
In current implementations, these operators are expressed in natural language but 
executed semantically by the underlying language model. The model performs the 
transformation defined by the operator’s rule text, and the resulting state transition is 
validated by the surrounding control logic. This ensures that linguistic expressiveness 
and formal control coexist within the same reasoning loop. 
 
Each operator transformation generates provenance. When operator O transforms 
artefact A into artefact B, the system records this transformation with a cryptographic 
signature. This creates an immutable chain: B was produced by O applied to A at 
timestamp T. This provenance chain is the foundation of traceability. 
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Cognitive Control orchestrates operators and enforces constraints. It determines which 
operators to apply, in what sequence, under what conditions. Cognitive Control can be 
expressed as a normative function 
 

𝐶: (𝐴# , 𝑂" , 𝐴$) → {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡, 𝑟𝑒𝑣𝑖𝑠𝑒} 
 
selecting valid transitions under explicit constraints. It checks preconditions before 
operator application and validates postconditions after. It detects when the system has 
reached a state where no valid operator can proceed, and it escalates. 
 
Control is normative, not statistical. It does not select the next operator based on what 
is most likely to produce good output. It selects based on what is valid given the current 
state and the system's constraints. This is a fundamental diNerence from how current AI 
systems work. 
 
Once finished, we can use CSM to ask questions like: for any given problem X, within a 
conceptual space Y and a set of cognitive operators Z, what are the conditions under 
which X is computationally solvable. 
 
Formally, for a problem 𝑋, within conceptual domain 𝑌and operator set 𝑍, 
 

𝑆𝑜𝑙𝑣𝑎𝑏𝑙𝑒(𝑋)   ⟺   𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑌) ∧ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠(𝑍) 
 
or, equivalently, 
 

∃(𝑌, 𝑍): 𝑋 is solvable within 𝐶𝑆𝑀(𝑌, 𝑍) 
 
We have started to work on establishing a cognitive analogy to Turing completeness, 
where solvability would depend on conceptual coverage and operator suNiciency. In 
other words: if this hypothesis holds true, reasoning can become a question of 
coverage: how far does Y span the relevant conceptual domain, and to what extent does 
the composition of Z provide suNicient transformations over Y to resolve X. 
 
But as of today, CSM is not yet fully formalized. We are working on that rigorously 
through the Advanced Cognitive Systems Lab. But the core principles are clear and have 
been validated through implementation and deployment. 
 
The relationship between the three core primitives defines CSM: a set of artefacts, 
applies operators to transform them, and uses control to orchestrate these 
transformations under explicit constraints. At any point in time, the system is in a 
specific cognitive state, defined by its current set of artefacts. The system transitions 
between states by applying operators. Each transition is discrete, explicit, and validated. 
 
CSM is not a replacement for large language models. LLMs are extraordinarily powerful 
at pattern recognition, language generation, and approximate reasoning. CSM provides a 
formal structure within which these capabilities can be deployed while maintaining the 
structural properties that high-stakes contexts demand. 
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In CSM-based systems, an LLM might generate candidate artefacts, suggest operator 
applications, or evaluate the quality of transformations. But the LLM operates as a 
component within the CSM structure. The artefacts, operators, and control are not 
generated by token prediction. They are formal elements of the system architecture. 
 
This transition -- from building systems to formalizing their underlying structure -- 
defines the methodological stance of this research: theory follows construction, and 
construction tests theory. 
 
CSM is presented as a hypothesis -- not detached from engineering, but evolving 
through it. Its purpose is to test, in practice, how far structured reasoning can be 
captured within a finite, verifiable state system -- and to refine the theory by building 
what it describes. 
 
 

4. LEIBNIZ-VON-NEUMANN ARCHITECTURE: THE BLUEPRINT 
CSM is an attempt to provide a theoretical frame for cognitive systems. Building them 
requires an architectural blueprint. The Leibniz-von-Neumann Architecture (LVNA) is 
that blueprint. It derived from our practical work in real-life customer projects. 
 
The reference to Leibniz in the Leibniz-von-Neumann Architecture is intentional: it 
reflects the idea that reasoning, like computation, can be expressed through formal 
operations on discrete symbols -- a concept Leibniz anticipated centuries before digital 
machines. 
 
LVNA emerged from the same practical work that led to CSM. As we built systems for 
regulated industries, we discovered architectural patterns that worked. Event-driven 
operation. Persistent state storage. Explicit operator services. Control mechanisms that 
orchestrate and validate. These patterns proved themselves in production before we 
recognized them as an architectural framework. 
 
In August 2025, we published an initial paper on LVNA. Here we present only the core 
principles and their relationship to CSM (although the name „CSM“ didn’t exist back 
then). 
 
LVNA is built on three architectural decisions: event-driven operation, state persistence, 
and operator-based transformation. These decisions correspond with CSM 
requirements and distinguish LVNA from conventional AI architectures. 
 
Event-driven means that the system operates by processing discrete events rather than 
by continuous execution. Each operator application is an event. Each artefact creation 
is an event. Each state transition is an event. This maps directly to the discrete nature of 
CSM states and transitions. The event stream is the system's operational foundation. 
 
State-persistent means that cognitive artefacts are stored durably, not held 
ephemerally in memory. LVNA uses Apache Kafka as both event bus and persistent 
memory. Every artefact, every transformation, every provenance chain is written to Kafka 
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topics and persists. This enables complete reconstruction of any reasoning path. It also 
enables the system to be stopped, inspected, and resumed without loss of cognitive 
state. While technology like Kafka is, per se, an industry standard, its role in LVNA is 
epistemic -- preserving the continuity of reasoning itself. 
 
Operator-based means that all reasoning transformations are mediated by explicit 
operators. There is no unstructured generation of cognitive content. When the system 
needs to create a new artefact or transform an existing one, it invokes a defined 
operator. Operators are implemented as services that receive artefacts as input and 
produce artefacts as output, with full provenance tracking. 
 
The Cognitive Control Unit is the orchestration layer. It monitors the current cognitive 
state, determines which operators can validly be applied, selects operators based on 
control policies, and validates that operator outputs satisfy constraints. The CCU does 
not generate cognitive content. It enforces cognitive integrity. 
 
This separation is fundamental. In conventional AI systems, the same mechanism that 
generates content also determines what content to generate. In LVNA, these are 
separated. Operators generate content. Control determines which operators to invoke 
and validates their outputs. This separation enables the structural properties that CSM 
requires. 
 
LVNA is software-defined. It runs on standard cloud infrastructure using commodity 
components. This is deliberate. Cognitive systems should be as portable and scalable 
as computing systems. 
 
The architecture accommodates large language models as operator implementations. 
An operator might use an LLM to generate candidate artefacts, to evaluate the relevance 
of evidence, or to suggest analogies. But the LLM operates within the operator interface. 
It receives artefacts as input and produces artefacts as output. The control layer 
validates these outputs before they become part of the cognitive state. 
 
This is how LVNA bridges the gap between token prediction and structured reasoning. It 
does not reject the capabilities of LLMs. It provides a structure within which those 
capabilities can be used while maintaining cognitive integrity. 
 
These LVNA components -- artefact management, operator orchestration, control 
services, provenance tracking, validation -- constitute what we call Cognitive 
Infrastructure. 
 
The sum of all LVNA components, we call ‚Cognitive Infrastructure‘, coining a new 
technology category: it is, in reality, the deployment layer that makes cognitive systems 
production-ready. Not better models, but infrastructure for production-grade AI. 
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5. PRODUCTION VALIDATION: E1 AND E2 
The first real-life implementations of LVNA are e1 and e2. These cognitive systems have 
been running in production since 2024, handling real workloads in regulated industries 
where failures have consequences. 
 
e1 operates in energy contexts at RWE, one of Europe's largest energy companies. The 
system processes real-time market data and provides decision support for trading and 
grid optimization under regulatory constraints. Every recommendation must be 
auditable. Every decision path must be reconstructible. 
 
e2 operates in industrial automation (Rwe, MVV Netze), financial services (Hauck 
Aufhäuser Lampe, BWGV) and Public Sector (within non-disclosed organisations). In all 
contexts, the requirements are similar: structured reasoning under explicit constraints, 
complete traceability, reproducible behavior, and the ability to recognize and escalate 
situations the system cannot handle. 
 
e1 and e2 are research prototypes in terms of using them for continued 
experimentations on LVNA and CSM, but they are robust, monitored and controlled 
production systems. They already solve immediate problems for clients. 
 
We identified and measured three critical properties over multiple years of operation. 
 
Reproducibility was measured by providing the same inputs multiple times and 
examining whether the system produced the same cognitive state sequences. Across 
thousands of test cases, the systems demonstrated 95 percent reasoning 
reproducibility, measured across hundreds of dedicated test cases at the customers‘ 
domain. The same input produces the same sequence of cognitive artefacts, the same 
operator applications, the same final state. 
 
The five percent non-reproducibility is not random variation. It occurs in specific, 
identifiable situations: when the system deliberately introduces bounded randomness 
for exploration, when human operators inject new constraints during processing, or 
when external data sources return diNerent values at diNerent times. These are designed 
behaviors, not failures of determinism. The system's structure is reproducible. Its 
interaction with non-deterministic external inputs is explicitly controlled. 
 
Causality tracing was measured by randomly selecting decisions and reconstructing 
their complete reasoning paths. Every operator application is logged with full 
provenance. Every artefact records its creation operator, input artefacts, and timestamp. 
Auditors can trace backward from any decision to the complete chain of reasoning that 
produced it. Across all production deployments, one hundred percent of decisions have 
been successfully traced. There are no gaps in the provenance chain. 
 
Bounded risk was assessed by measuring the system's behavior on inputs outside its 
training distribution. In conventional AI systems, out-of-distribution inputs are the 
primary source of unquantified risk. The system may produce confident but incorrect 
outputs with no indication that it has exceeded its competence boundary. 
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In e1 and e2, out-of-distribution inputs trigger observable failures. The control layer 
detects that no valid operator can proceed, or that operator outputs violate constraints, 
and the system escalates. It does not attempt to generate plausible-looking output. It 
explicitly acknowledges that it has reached the boundary of its defined competence. 
 
This enables bounded risk quantification. An enterprise deploying these systems can 
define the input space, measure the system's behavior across that space, and identify 
the boundaries where failures become observable. Risk is not eliminated, but will be 
bounded and quantifiable. This can possibly bring us toward insurance coverage for 
these deployments, something that is not currently possible for conventional AI systems 
in comparable high-stakes contexts. 
 
The production experience has also revealed limitations and costs. Cognitive systems 
like e1 and e2 are more complex to build than conventional AI systems. They require 
explicit operator design, constraint specification, and control policy definition. This is 
more labor-intensive than training a model end-to-end. The trade-oN is between upfront 
design eNort and deployment risk. 
 
Cognitive systems are also slower. Maintaining explicit state, validating every transition, 
and checking constraints adds computational overhead. For applications where 
response time is critical and deployment risk is low, this overhead may not be justified. 
For applications where correctness and auditability are mandatory, it is a necessary 
cost. 
 
To our knowledge, e1 and e2 are the first production cognitive systems operating in 
regulated industries within these properties named above. We did not build them to be 
first. We built them because clients needed systems that could actually be deployed. 
But the result is that we have operational experience that does not exist elsewhere. 
 
Each deployment not only validates the architecture, but extends the theory. Every 
trace, every failure, every reproducible reasoning path refines our understanding of what 
CSM must capture. The production systems are not end points -- they are the 
experimental apparatus of the theory itself. 
 
 

6. IMPLICATIONS 
Cognitive systems and the infrastructure that supports them have implications across 
multiple domains. We examine four: research, model development, industry adoption, 
and regulation. 
 
For research, CSM opens questions that need rigorous work. The model we have 
defined is based on production experience, not formal derivation. Formalizing it properly 
requires answering questions we have not yet fully addressed. What is the minimal set 
of operator types required for general cognitive computation? How do we formally verify 
that a set of constraints is satisfiable? What are the complexity bounds for cognitive 
state reachability? How do we compose operators while preserving validation 
properties? 
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These questions are analogous to the questions that followed early computational 
models: decidability, complexity classes, automata theory. CSM provides a starting 
point, but the theory requires substantial development. This work will benefit from 
collaboration across computer science, logic, and cognitive science. We are pursuing 
this through ACSL, but we recognize it is larger than any single organization. 
 
Research into cognitive systems also benefits AI model development. When models 
operate as components within cognitive infrastructure, their requirements become 
clearer. A model that generates candidate artefacts needs diNerent capabilities than a 
model that validates transformations. A model that operates under explicit constraints 
needs diNerent characteristics than a model that optimizes for output quality alone. 
 
For model developers and vendors, cognitive infrastructure provides opportunity 
rather than competition. As enterprises adopt cognitive infrastructure for high-stakes 
deployment, demand for capable models increases. Models become more valuable 
when they can be deployed safely, and cognitive infrastructure enables that 
deployment. 
 
This creates pressure and opportunity in model development. Models that can expose 
their uncertainty, that can operate under constraints, that can indicate when they are 
outside their training distribution become more valuable in cognitive infrastructure 
contexts. Market demand will drive capability development in these directions. 
 
For industry, cognitive infrastructure provides a practical adoption path for AI in high-
stakes contexts. The current situation is untenable. Enterprises see AI capabilities but 
cannot deploy them where the stakes are highest and the regulatory requirements are 
strictest. Cognitive infrastructure addresses this by providing the structural properties 
that deployment requires. 
 
Adoption will likely follow the pattern of previous infrastructure transitions. Early 
adopters in regulated industries validate the approach. Tooling and standardization 
mature. Costs decrease through economies of scale and competition. More industries 
adopt. Eventually, cognitive infrastructure becomes the default approach for enterprise 
AI deployment in any context where governance and risk management matter. 
 
For regulation, cognitive infrastructure enables diNerent approaches to AI governance. 
Current regulatory frameworks struggle with AI because the systems are opaque and 
non-deterministic. Regulators can require documentation and testing, but they cannot 
verify that a system actually behaves as documented. 
 
Cognitive systems could fundamentally change this. When every reasoning step is 
traceable, every transformation is validated, and every constraint is enforced 
structurally, compliance becomes verifiable. A regulator can examine the cognitive 
state, inspect the operators, and validate that constraints are enforced during operation, 
not just claimed in documentation. 
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Regulatory pressure can drive innovation rather than hinder it. The European Union's AI 
Act and similar frameworks worldwide create strong incentives for structural 
approaches to AI safety and compliance. Cognitive infrastructure emerged partly from 
these regulatory requirements. Organizations building systems for regulated 
deployment must provide auditability, transparency, and risk management. Cognitive 
infrastructure provides these properties structurally. 
 
Further work will extend Cognitive Control with explicit epistemic grounding -- anchoring 
reasoning not only in logical structure, but in structured knowledge itself. 
 
From an engineering standpoint, this work proceeds empirically: by building, observing, 
and measuring. We do not claim that reasoning is a state machine; rather, we are 
discovering how far reasoning can be engineered as one. The distinction is subtle but 
crucial -- we build to learn, and we formalize to make learning durable. 
 
 

7. CONCLUSION AND OUTLOOK 
We didn’t set out to invent a new class of AI systems. We simply needed systems that 
could be trusted — and built the architecture they required. 
 
Cognitive State Machines define what structured, verifiable reasoning means in 
computational terms: discrete states, operator-mediated transitions, and formal 
control. 
 
The Leibniz-von-Neumann Architecture translates those principles into real systems 
that run on standard infrastructure. 
 
e1 and e2 have proven that this architecture works -- not in theory, but in production, 
under regulation, where failure has consequences. 
 
Together, they form a Cognitive Architecture: an integrated framework that bridges the 
gap between AI capability and real-world adoption. Not by making models bigger, but by 
giving them structure -- the kind that can be traced, validated, and certified. 
 
The work continues. CSM is still being formalized. LVNA keeps evolving through 
deployment. The cognitive infrastructure beneath both is expanding toward 
standardization. But the foundations are solid. 
 
The deployment gap between AI capability and trust will not close through scale -- it will 
close through architecture. That is the path we are on. Perhaps that is the most 
European part of this story -- progress not through scale, but through system structure 
and architecture. 
 
Advanced Cognitive Systems is not an experiment in AI. In retrospect, the implications 
reach beyond our initial intent -- it could be the beginning of a new architecture layer for 
intelligence itself. 
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Where Turing formalized computation and von Neumann laid the foundation for its 
industrialization, Cognitive State Machines adapt that analogy to reasoning itself. 
 
We began as engineers solving immediate deployment problems. But solving them put 
us on a path towards developing a theory -- one that did not yet exist. The two lines 
become symbiotic: Practice is being abstracted into theory; theory stabilizes practice. 
 
We do not ask for applause or approval. We share our motivation, our rationale and the 
direction of our work. In retrospect, the field’s fascination with scale now appears as a 
transitional phase -- necessary to expose the deeper need for structure. And although 
we have already gone deep, it still feels like we are just getting started. 
 
If this path holds, it will not just define how machines reason -- it will redefine our 
understanding of cognition itself. 
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